\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx\) [391]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 286 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=\frac {3 C \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{4 b d}+\frac {(4 b B-3 a C) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\cos (c+d x)),\frac {b (1-\cos (c+d x))}{a+b}\right ) \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{2 \sqrt {2} b^2 d \sqrt {1+\cos (c+d x)} \sqrt [3]{\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (4 A b^2-4 a b B+3 a^2 C+b^2 C\right ) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\cos (c+d x)),\frac {b (1-\cos (c+d x))}{a+b}\right ) \left (\frac {a+b \cos (c+d x)}{a+b}\right )^{2/3} \sin (c+d x)}{2 \sqrt {2} b^2 d \sqrt {1+\cos (c+d x)} (a+b \cos (c+d x))^{2/3}} \]

[Out]

3/4*C*(a+b*cos(d*x+c))^(1/3)*sin(d*x+c)/b/d+1/4*(4*B*b-3*C*a)*AppellF1(1/2,-1/3,1/2,3/2,b*(1-cos(d*x+c))/(a+b)
,1/2-1/2*cos(d*x+c))*(a+b*cos(d*x+c))^(1/3)*sin(d*x+c)/b^2/d/((a+b*cos(d*x+c))/(a+b))^(1/3)*2^(1/2)/(1+cos(d*x
+c))^(1/2)+1/4*(4*A*b^2-4*B*a*b+3*C*a^2+C*b^2)*AppellF1(1/2,2/3,1/2,3/2,b*(1-cos(d*x+c))/(a+b),1/2-1/2*cos(d*x
+c))*((a+b*cos(d*x+c))/(a+b))^(2/3)*sin(d*x+c)/b^2/d/(a+b*cos(d*x+c))^(2/3)*2^(1/2)/(1+cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 286, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3102, 2835, 2744, 144, 143} \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=\frac {\sin (c+d x) \left (3 a^2 C-4 a b B+4 A b^2+b^2 C\right ) \left (\frac {a+b \cos (c+d x)}{a+b}\right )^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\cos (c+d x)),\frac {b (1-\cos (c+d x))}{a+b}\right )}{2 \sqrt {2} b^2 d \sqrt {\cos (c+d x)+1} (a+b \cos (c+d x))^{2/3}}+\frac {(4 b B-3 a C) \sin (c+d x) \sqrt [3]{a+b \cos (c+d x)} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\cos (c+d x)),\frac {b (1-\cos (c+d x))}{a+b}\right )}{2 \sqrt {2} b^2 d \sqrt {\cos (c+d x)+1} \sqrt [3]{\frac {a+b \cos (c+d x)}{a+b}}}+\frac {3 C \sin (c+d x) \sqrt [3]{a+b \cos (c+d x)}}{4 b d} \]

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(2/3),x]

[Out]

(3*C*(a + b*Cos[c + d*x])^(1/3)*Sin[c + d*x])/(4*b*d) + ((4*b*B - 3*a*C)*AppellF1[1/2, 1/2, -1/3, 3/2, (1 - Co
s[c + d*x])/2, (b*(1 - Cos[c + d*x]))/(a + b)]*(a + b*Cos[c + d*x])^(1/3)*Sin[c + d*x])/(2*Sqrt[2]*b^2*d*Sqrt[
1 + Cos[c + d*x]]*((a + b*Cos[c + d*x])/(a + b))^(1/3)) + ((4*A*b^2 - 4*a*b*B + 3*a^2*C + b^2*C)*AppellF1[1/2,
 1/2, 2/3, 3/2, (1 - Cos[c + d*x])/2, (b*(1 - Cos[c + d*x]))/(a + b)]*((a + b*Cos[c + d*x])/(a + b))^(2/3)*Sin
[c + d*x])/(2*Sqrt[2]*b^2*d*Sqrt[1 + Cos[c + d*x]]*(a + b*Cos[c + d*x])^(2/3))

Rule 143

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(b*c
- a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 144

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
(b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 2744

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[Cos[c + d*x]/(d*Sqrt[1 + Sin[c + d*x]]*Sqrt
[1 - Sin[c + d*x]]), Subst[Int[(a + b*x)^n/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Sin[c + d*x]], x] /; FreeQ[{a, b,
 c, d, n}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*n]

Rule 2835

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(b*
c - a*d)/b, Int[(a + b*Sin[e + f*x])^m, x], x] + Dist[d/b, Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{
a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {3 C \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{4 b d}+\frac {3 \int \frac {\frac {1}{3} b (4 A+C)+\frac {1}{3} (4 b B-3 a C) \cos (c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx}{4 b} \\ & = \frac {3 C \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{4 b d}+\frac {(4 b B-3 a C) \int \sqrt [3]{a+b \cos (c+d x)} \, dx}{4 b^2}+\frac {1}{4} \left (4 A+C-\frac {a (4 b B-3 a C)}{b^2}\right ) \int \frac {1}{(a+b \cos (c+d x))^{2/3}} \, dx \\ & = \frac {3 C \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{4 b d}-\frac {((4 b B-3 a C) \sin (c+d x)) \text {Subst}\left (\int \frac {\sqrt [3]{a+b x}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\cos (c+d x)\right )}{4 b^2 d \sqrt {1-\cos (c+d x)} \sqrt {1+\cos (c+d x)}}+\frac {\left (\left (-4 A-C+\frac {a (4 b B-3 a C)}{b^2}\right ) \sin (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {1+x} (a+b x)^{2/3}} \, dx,x,\cos (c+d x)\right )}{4 d \sqrt {1-\cos (c+d x)} \sqrt {1+\cos (c+d x)}} \\ & = \frac {3 C \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{4 b d}-\frac {\left ((4 b B-3 a C) \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)\right ) \text {Subst}\left (\int \frac {\sqrt [3]{-\frac {a}{-a-b}-\frac {b x}{-a-b}}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\cos (c+d x)\right )}{4 b^2 d \sqrt {1-\cos (c+d x)} \sqrt {1+\cos (c+d x)} \sqrt [3]{-\frac {a+b \cos (c+d x)}{-a-b}}}+\frac {\left (\left (-4 A-C+\frac {a (4 b B-3 a C)}{b^2}\right ) \left (-\frac {a+b \cos (c+d x)}{-a-b}\right )^{2/3} \sin (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {1+x} \left (-\frac {a}{-a-b}-\frac {b x}{-a-b}\right )^{2/3}} \, dx,x,\cos (c+d x)\right )}{4 d \sqrt {1-\cos (c+d x)} \sqrt {1+\cos (c+d x)} (a+b \cos (c+d x))^{2/3}} \\ & = \frac {3 C \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{4 b d}+\frac {(4 b B-3 a C) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\cos (c+d x)),\frac {b (1-\cos (c+d x))}{a+b}\right ) \sqrt [3]{a+b \cos (c+d x)} \sin (c+d x)}{2 \sqrt {2} b^2 d \sqrt {1+\cos (c+d x)} \sqrt [3]{\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (4 A+C-\frac {a (4 b B-3 a C)}{b^2}\right ) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\cos (c+d x)),\frac {b (1-\cos (c+d x))}{a+b}\right ) \left (\frac {a+b \cos (c+d x)}{a+b}\right )^{2/3} \sin (c+d x)}{2 \sqrt {2} d \sqrt {1+\cos (c+d x)} (a+b \cos (c+d x))^{2/3}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 2.34 (sec) , antiderivative size = 266, normalized size of antiderivative = 0.93 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=-\frac {3 \sqrt [3]{a+b \cos (c+d x)} \csc (c+d x) \left (4 \left (4 A b^2-4 a b B+3 a^2 C+b^2 C\right ) \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},\frac {1}{2},\frac {4}{3},\frac {a+b \cos (c+d x)}{a-b},\frac {a+b \cos (c+d x)}{a+b}\right ) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}}+(4 b B-3 a C) \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},\frac {1}{2},\frac {7}{3},\frac {a+b \cos (c+d x)}{a-b},\frac {a+b \cos (c+d x)}{a+b}\right ) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} (a+b \cos (c+d x))-4 b^2 C \sin ^2(c+d x)\right )}{16 b^3 d} \]

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(2/3),x]

[Out]

(-3*(a + b*Cos[c + d*x])^(1/3)*Csc[c + d*x]*(4*(4*A*b^2 - 4*a*b*B + 3*a^2*C + b^2*C)*AppellF1[1/3, 1/2, 1/2, 4
/3, (a + b*Cos[c + d*x])/(a - b), (a + b*Cos[c + d*x])/(a + b)]*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[
(b*(1 + Cos[c + d*x]))/(-a + b)] + (4*b*B - 3*a*C)*AppellF1[4/3, 1/2, 1/2, 7/3, (a + b*Cos[c + d*x])/(a - b),
(a + b*Cos[c + d*x])/(a + b)]*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*(
a + b*Cos[c + d*x]) - 4*b^2*C*Sin[c + d*x]^2))/(16*b^3*d)

Maple [F]

\[\int \frac {A +B \cos \left (d x +c \right )+C \left (\cos ^{2}\left (d x +c \right )\right )}{\left (a +\cos \left (d x +c \right ) b \right )^{\frac {2}{3}}}d x\]

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+cos(d*x+c)*b)^(2/3),x)

[Out]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+cos(d*x+c)*b)^(2/3),x)

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {2}{3}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(2/3),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(b*cos(d*x + c) + a)^(2/3), x)

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {2}{3}}}\, dx \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(2/3),x)

[Out]

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)/(a + b*cos(c + d*x))**(2/3), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {2}{3}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(2/3),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(b*cos(d*x + c) + a)^(2/3), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {2}{3}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(2/3),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(b*cos(d*x + c) + a)^(2/3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{2/3}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{2/3}} \,d x \]

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(2/3),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(2/3), x)